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The Basic Models

1.1 Introduction

The central limit theorem is a key limiting result in probability and under-
pins a vast range of applications. Let Sn = X1 + · · · + Xn denote the sum of
independent and identically distributed scalar random variables X1, . . . , Xn

with mean µ and finite positive variance σ2. The central limit theorem con-
cerns the distribution of Sn as n → ∞. Since its mean and variance are nµ
and nσ2, the sum Sn must be centered and scaled in order to have a non-
trivial limiting distribution. This is achieved by considering the distribution
of Zn = (Sn − bn)/an, where bn = nµ and a2

n = nσ2, which has a limiting
standard normal, N(0, 1), distribution when n → ∞. Formally we write

Zn =
Sn − bn

an

D−→ Z, n → ∞,

where
D−→ denotes convergence in distribution, a weak form of convergence

under which Pr(Zn ≤ z) converges pointwise to Pr(Z ≤ z) for every z ∈ R at
which the latter function is continuous; since this limit is the standard normal
distribution function, !(z), convergence occurs for all z. Although weak, this
mode of convergence is statistically useful because it yields the approximation
Pr(Zn ≤ z) ≈ !(z) for large enough n.

The central limit theorem has wide applications to data analysis because
it provides finite-sample approximations for the distributions of sums and
related quantities such as averages. These approximations allow one to write
Sn

·∼ N(bn, a2
n) for finite—but preferably large—n, and often the values of bn

and an can be estimated. The validity of the underlying conditions can be
assessed by suitable diagnostic plots. Moreover under certain conditions the
normal limit applies also to sums of non-identically distributed or dependent
variables, so the approximation applies more broadly.
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An analogous result, the extremal types theorem, applies to sample maxima.

Theorem 1.1 (Extremal types) Let Mn = max(X1, . . . , Xn) be the max-
imum of a random sample X1, . . . , Xn with distribution function F . If se-
quences (an) > 0 and (bn) can be chosen in such a way that the centred
and scaled sample maximum, (Mn − bn)/an, has a non-degenerate limiting
distribution G, then this must be the generalized extreme-value distribution,

G(x) =





exp

[
− {1 + ξ(x − η)/τ}→1/ξ

+

]
, ξ (= 0,

exp [− exp {−(x − η)/τ}] , ξ = 0,
x ∈ R, (1.1)

where we write a+ = max(a, 0) for any real a, and where ξ, η ∈ R and τ > 0.

Put another way, (Mn − bn)/an
D−→ Z as n → ∞, where Z has distribution

function G. !

The ‘types’ are the qualitatively different distributions that arise for ξ = 0,
ξ > 0 and ξ < 0, which are usually combined into (1.1) for statistical purposes;
they are discussed in Section 1.3.

Theorem 1.1 provides a natural model for sample maxima. For example,
when confronted with 30 years of annual maximum windspeeds at some loca-
tion and asked to estimate the largest windspeed that might arise there over
the next century, it seems natural to base the necessary extrapolation on (1.1),
which often fits the data fairly well—the annual maximum is the largest of
365 daily maxima, and we might hope that G(x) provides an adequate ap-
proximation to its distribution. This hope might be misplaced, however: if
the daily observations show dependence and seasonality then the number of
‘independent’ observations from which the maximum is computed might be
much smaller than 365, and then the usefulness of (1.1) might be question-
able. Moreover, reducing the data to annual maxima is often undesirable, since
other observations also contain information about the extremes. It turns out
that a related result holds for another natural definition of rare events, namely
those observations that exceed a high threshold.

Theorem 1.2 (Exceedances) Let X be a random variable having distri-
bution function F , and suppose that a function c(u) can be chosen so that
the limiting distribution, H , of (X − u)/c(u), conditional on X > u, is non-
degenerate as u approaches the upper support point x∗ = sup{x : F (x) < 1}
of X . If such an H exists, it must be the generalized Pareto distribution,

H(x) =

{
1 − (1 + ξx/σ)→1/ξ

+ ξ (= 0,

1 − exp (−x/σ) , ξ = 0,
x > 0, (1.2)

where ξ ∈ R and σ > 0. Put another way, as x → x∗,

Pr{(X − u)/c(u) > x | X > u} → 1 − H(x).
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!

Comparison of (1.1) and (1.2) suggests that these results must be closely
related, and in fact they hold under the same conditions, with the same value
of ξ, and with σ = τ + ξ(u − η). Because of this close connection, below we
refer to the two distributions collectively as the extremal distributions.

In this chapter we derive these theorems and some closely related results
and discuss some of their implications. Our arguments also apply to sample
minima and exceedances below thresholds, since

min(X1, . . . , Xn) = − max(−X1, . . . , −Xn)

and X < u precisely when −X > −u. Thus in theoretical discussion, and
indeed in data analysis, we can consider whichever tail of the distribution is
most convenient—provided we later remember to reverse any changes of sign!

1.2 Convergence of Extremes

1.2.1 Maxima

Let X1, . . . , Xn be independent and identically distributed random variables
with distribution function F and let x∗ = sup{x : F (x) < 1} denote their
upper support point. Then, by independence, their maximum Mn satisfies

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x) =
n∏

j=1

Pr(Xj ≤ x) = F (x)n,

which tends to the degenerate distribution function I(x ≥ x∗) as n → ∞,
where I(·) is an indicator function. This is not a useful limit. Like the sum
appearing in the central limit theorem, the maximum Mn must be centred
and scaled for a non-degenerate limit to emerge, and we therefore consider
the standardized version (Mn − bn)/an, where the real-valued sequences bn

and an > 0 must be chosen so that for x ∈ R,

lim
n→∞

Pr

(
Mn − bn

an
≤ x

)
= lim

n→∞
Pr (Mn ≤ bn + anx)

= lim
n→∞

F (bn + anx)n

= lim
n→∞

{1 − Λn(x)/n}n

= exp {−Λ(x)} , (1.3)

say, where we have set

Λn(x) = n {1 − F (bn + anx)} (1.4)
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Figure 1.1

Cumulative
distribution
functions of maxima
(left) and
renormalized
maxima (right) of
m = 1, 7, 30, 365,
3650 standard
exponential variables
(from left to right),
with limiting
Gumbel distribution
(heavy).
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and limn→∞ Λn(x) = Λ(x). Note that the convergence of (Mn − bn)/an to
a non-degenerate limiting random variable is equivalent to pointwise conver-
gence of Λn(x) to Λ(x) in the set where the latter is finite.

If the limit is a distribution function G(x), then Λ(x) must be a decreasing
function of x satisfying

lim
x→→∞

Λ(x) = ∞, lim
x→∞

Λ(x) = 0.

Moreover, if Λ(x) = ∞ for x < x→ and/or Λ(x) = 0 for x > x+, then the
limiting distribution (1.3) places probability only in the interval [x→, x+]. If
G is non-degenerate, then clearly x→ must be strictly less than x+.

Example 1.3 (Exponential distribution) Let F (x) = 1 − exp(−x) for
x > 0; then x∗ = ∞. Provided bn + anx > 0,

F (bn + anx)n = [1 − exp {−(bn + anx)}]n ,

so if we set bn = log n and an = 1, then since any fixed x will ultimately be
larger than − log n,

G(x) = lim
n→∞

F (bn + anx)n = lim
n→∞

(
1 −

e→x

n

)n

= exp
(
−e→x

)
, x ∈ R,

which is (1.1) with η = 0, τ = 1 and ξ = 0.

In this case Λ(x) = e→x, x→ = −∞ and x+ = ∞.

Figure 1.1 shows the behaviour of un-normalised and normalised maxima
of exponential random samples. The normalised maxima appear to converge
rapidly to the limiting distribution. !

Example 1.4 (Uniform distribution) Let F (x) = x for x ∈ [0, 1]; then
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x∗ = 1. Provided 0 ≤ bn + anx ≤ 1, we have

F (bn + anx)n = (bn + anx)n,

so if we set bn = 1, an = 1/n and x ≤ 0, we have (bn + anx)n → ex. Since the
limit must be a distribution function, we must take

Λ(x) =

{
−x, x ≤ 0,

0, x > 0;

thus Λ(x) = (−x)+. Clearly Λ is decreasing, x→ = −∞ and x+ = 0, so

G(x) =

{
ex, x ≤ 0,

1, x > 0.
(1.5)

This is the distribution function of −W , where W is a standard exponential
variable. It is straightforward to check that (1.5) is (1.1) with η = 1, τ = 1
and ξ = −1. !

Example 1.5 (Pareto distribution) Let F (x) = 1 − x→α for x > 1 and
α > 0; then x∗ = ∞. Provided bn + anx > 1, we have

F (bn + anx)n =
{

1 − (bn + anx)→α
}n

and if bn = 0 and an = n1/α, and if x > 0 so that x is ultimately larger than
n→1/α, then

G(x) = lim
n→∞

F (bn + anx)n = lim
n→∞

(
1 −

x→α

n

)n

= exp
(
−x→α

)
, x > 0,

which is (1.1) with η = 1, τ = 1/α and ξ = 1/α.
In this case

Λ(x) =

{
∞, x ≤ 0,

x→α, x > 0,

and x→ = 0, x+ = ∞. !

An obvious question is whether these limits are unique: could other normal-
ising sequences {a′

n} and {b′
n} lead to different limits? It turns out that the

only other possibility is that any sequence leading to a non-degenerate limit-
ing distribution as n → ∞ must satisfy (bn − b′

n)/a′
n → η and an/a′

n → τ > 0,
corresponding to replacing Λ(x) by Λ{(x−η)/τ}. At the end of this section we
establish the following result, from which Theorem 1.1 immediately follows.

Lemma 1.6 The only possible non-degenerate limit for (1.4) as n → ∞ is

Λ(y) =

{
{1 + ξ(y − η)/τ}→1/ξ

+ , ξ (= 0,

exp {−(y − η)/τ} , ξ = 0,
y ∈ R, (1.6)
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where η and ξ are real-valued and τ is positive. !

We prove this in Section 1.2.3, but first explore some of its consequences.
As the limiting distribution for a rescaled sample maximum is

G(y) = exp {−Λ(y)} , y ∈ R,

the corresponding probability density function is

−Λ̇(y) exp {−Λ(y)} , y ∈ R, (1.7)

where

−Λ̇(y) = −
dΛ(y)

dy
=

{
τ→1 {1 + ξ(y − η)/τ}→1/ξ→1

+ , ξ (= 0,

τ→1 exp {−(y − η)/τ} , ξ = 0,
(1.8)

is non-negative because Λ(y) is decreasing. The transformation y *→ Λ(y)
is strictly monotonic decreasing on the interval where Λ(y) is finite, so if a
random variable Y has distribution G and if x > 0, then

Pr{Λ(Y ) ≤ x} = Pr{Y ≥ Λ→1(x)}
= 1 − exp

[
−Λ

{
Λ→1(x)

}]

= 1 − exp(−x),

i.e., W = Λ(Y ) has a standard exponential distribution. Thus Y can be gen-
erated as Λ→1(W ).

Largest order statistics

It is straightforward to extend the limiting density (1.7) for the maximum to
a fixed number of upper order statistics. Consider the r largest order statistics
Yr ≤ · · · ≤ Y1 of the rescaled variables {(Xj − bn)/an : j = 1, . . . , n}, and
suppose that n → ∞. As Y1 has the limiting distribution of the rescaled
maximum (Mn − bn)/an,

Pr(Y1 ≤ y1) = exp {−Λ(y1)} , y1 ∈ R,

and fY1
(y1) = {−Λ̇(y1)} exp {−Λ(y1)}. The second-largest variable Y2 is also

the largest of an infinite number of these rescaled variables but cannot exceed
Y1, so below y1 the distributions of Y2 and Y1 must be proportional. Hence

Pr(Y2 ≤ y2 | Y1 = y1) =

{
exp {Λ(y1) − Λ(y2)} , y2 < y1,

1, y2 ≥ y1,

with corresponding conditional density

fY2|Y1
(y2 | y1) = {−Λ̇(y2)} exp {Λ(y1) − Λ(y2)} , y2 < y1.
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Evidently the same argument applies to Y3, Y4, and so forth, and after can-
cellations in the exponent the joint density of Y1, . . . , Yr is found to be

fY1,...,Yr
(y1, . . . , yr) = fY1

(y1)
r∏

j=2

fYj |Yj−1
(yj | yj→1)

= exp {−Λ(yr)} ×
r∏

j=1

{
−Λ̇(yj)

}
, (1.9)

where yr < · · · < y1; this reduces to (1.7) when r = 1. Expression (1.9) allows
inference from the r highest or, with the appropriate changes lowest, values
of a large sample.

The fit of this model can be checked using the fact that Λ(Y1), Λ(Y2)−Λ(Y1)
and so forth have independent standard exponential distributions. To see this,
note that as Λ(y) is decreasing in y,

Pr(Y1 ≤ y1) = Pr{Λ(Y1) ≥ Λ(y1)} = exp {−Λ(y1)} , Λ(y1) > 0,

which implies that Λ(Y1) has a standard exponential distribution, and likewise

Pr(Y2 ≤ y2 | Y1 = y1) = Pr{Λ(Y2) ≥ Λ(y2) | Y1 = y1}
= exp [− {Λ(y2) − Λ(y1)}] , Λ(y2) − Λ(y1) > 0,

yields that Λ(Y2)−Λ(y1) is also standard exponential, conditional on Y1 = y1.
But since this distribution does not depend on y1, the result is also true uncon-
ditionally, i.e., Λ(Y2) − Λ(Y1) ∼ exp(1), independent of Λ(Y1). By recursion
we see that the differences Λ(Yj) − Λ(Yj→1) are independent and standard
exponential for j = 2, 3, . . .. Thus if an estimate Λ̂ of Λ is available, then
Λ̂(y1), Λ̂(y2) − Λ̂(y1), . . . should be close to a standard exponential sample,
systematic departures from which suggest that the model is poor.

Caveats

Theorem 1.1 states not that maxima must follow the generalized extreme-
value distribution, but rather that if a limiting distribution for maxima exists,
then it must be of form (1.1). Here is an example for which no limit exists.

Example 1.7 (Logarithmic distribution) Consider the distribution func-
tion

F (x) = 1 − (log x)→1, x > e.

In this case Λn(x) = n/ log(bn +anx), and if a limit Λ(x) exists, then we must
have bn + anx → ∞ as n → ∞. Now

n→1 log(bn + anx) = n→1 log an + n→1 log(x + bn/an),

and if the sequence bn/an is bounded, then any limit cannot depend on x. If
bn/an is unbounded, then it must ultimately be positive, and then log(x +



8 Contents

bn/an) ∼ log(bn/an), and again the limit cannot depend on x. Thus in this
case no sequences exist for which linear renormalisation of the maximum can
yield a non-degenerate limiting distribution; the maxima grow too fast.

If Y is Pareto with α = 1, however, then X = exp(Y ) has the distribution
above, so a limiting distribution exists for log X when linearly rescaled. !

1.2.2 Poisson process approximation

We now outline how the convergence of maxima implies that of the rescaled
sample values to a Poisson process. We first recall some useful facts about
moment-generating functions and the Poisson and related distributions.

The moment-generating function of a scalar random variable X is defined
as MX(s) = E{exp(sX)}, if this is finite for values of s within some open
set S containing the origin. The derivatives of MX(s) can be used to find the
moments of X ; moreover, if M1(s) and M2(s) are identical within S, then the
corresponding distributions are also identical, i.e., there is a one-one mapping
between distributions and moment-generating functions. The latter are also
useful in establishing convergence results: if as n → ∞ the moment-generating
functions {Mn} of a sequence of random variables {Xn} converge pointwise to

MX within S, then the random variables converge in distribution, Xn
D−→ X .

These properties also hold when X is vector-valued; then s has the dimen-
sion of X and S is an open set containing the origin.

Moment-generating functions have many other uses in basic statistics, some
of which are explored in Problem ??.??.

Example 1.8 (Poisson distribution) The moment-generating function
of a Poisson random variable X with mean λ > 0 is

E(esX) =
∞∑

x=0

esx λx

x!
e→λ =

∞∑

x=0

(λes)x

x!
e→λ = exp{λ(es − 1)}, s ∈ R.

Likewise the joint moment-generating function of two independent Poisson
variables with means λ1 and λ2 is

E(es1X1+s2X2 ) = E(es1X1 )E(es2X2 )

= exp{λ1(es1 − 1) + λ2(es2 − 1)}, s1, s2 ∈ R. (1.10)

The moment-generating function of X1+X2 is obtained by setting s1 = s2 = s,
in which case (1.10) reduces to exp{(λ1 + λ2)(es − 1)}, which corresponds to
a Poisson variable with mean λ1 + λ2. Clearly a finite sum of independent
Poisson variables also has a Poisson distribution, and likewise for an infinite
sum of independent Poisson variables for which

∑∞
j=1 λj is finite. !

Example 1.9 (Multinomial distribution) Let X = (X0, . . . , XD) be a
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multinomial random variable with probability mass function

Pr(X0 = x0, . . . , XD = xD) =
n!

x0! · · · xD!
px0

0 · · · pxD

D ,

where the pd are probabilities that sum to unity and x = (x0, . . . , xD) lies
in the set X of (D + 1)-tuples of non-negative integers that sum to n. The
corresponding moment-generating function is

MX(s) =
∑

x∈X

exp(s0x0 + · · · + sDxD)
n!

x0! · · · xD!
px0

0 · · · pxD

D ,

where s = (s0, . . . , sD), and the multinomial theorem gives

MX(s) =

{
D∑

d=0

pd exp(sd)

}n

, s0, . . . , sD ∈ R.

Suppose now that we seek the joint distribution of X1, . . . , XD as n → ∞ and
npd → λd > 0 for d = 1, . . . , D. We set s0 = 0 and write

D∑

d=0

pd exp(sd) = p0 +
D∑

d=1

pdesd = 1 − n→1
D∑

d=1

npd + n→1
D∑

d=1

npdesd

using the fact that p0 = 1 − (p1 + · · · + pD). As n → ∞ we therefore have

E {exp(s1X1 + · · · + sDXD)} =

{

1 +
1

n

D∑

d=1

npd(esd − 1)

}n

→ exp

{
D∑

d=1

λd(esd − 1)

}

, s1, . . . , sD ∈ R,

which we see by comparison with (1.10) is the moment-generating function of
D independent Poisson random variables with means λ1, . . . , λD.

If D = 1 then the binomial variable X1 with probability p1 converges to
a Poisson variable with mean λ when np1 → λ. This law of small numbers
underpins the classical Poisson approximation for binomial probabilities. !

Limiting results for background variables

We saw previously that the convergence of maxima is equivalent to

Λn(x) = n{1 − F (bn + anx)} → Λ(x), n → ∞,

for any x at which Λ(x) is finite. To parlay this into further results, suppose
that we have an infinite series of background variables Xj whose extremes are
of interest; these might be successive rainfall amounts. We assume the Xj are
independent and identically distributed with distribution F and define the
point patterns

Pn = {(j/n, (Xj − bn)/an) : j ∈ Z} , n = 1, 2, . . . ,
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in the plane E = R2; the horizontal axis represents time, with n background
observations per unit of time, and the vertical axis represents their sizes. In
order to obtain a limiting process that can be used as an approximation for
finite samples, we suppose that n → ∞, giving more and more background
variables in each unit of time, and we renormalise these variables so that the
maximum in each such unit has a limiting GEV distribution. We shall show
that the number of points of Pn in any useful subset A ⊂ E converges to a
Poisson random variable with mean µ(A), and that the numbers of points in
disjoint sets are independent Poisson variables. If A = (t′, t]× (x′, x] is a finite
rectangle then

µ(A) = (t − t′){Λ(x′) − Λ(x)}, t′ < t, x′ < x, (1.11)

and the means for more complex sets are defined by addition: if A is a union of
disjoint rectangles A1, . . . , Ak, then µ(A) =

∑k
j=1 µ(Aj), provided this sum

is finite. Equivalently we can integrate the intensity function

µ̇(t, x) =
∂2µ(A)

∂t∂x
= −Λ̇(x), t, x ∈ R,

over A, giving

µ(A) =

∫

A
µ̇(t, x) dtdx.

The limiting process of points on E is called a Poisson point process and the
function µ(·) is called its measure. The requirement that a Poisson variable
should have a finite mean implies that it is illegitimate to consider the number
of points in sets of infinite measure, such as E .

To see where these results come from, let A = (t′, t] × (x′, x] be a finite
rectangle in E and let Nn(A) denote the number of points of Pn in A. Clearly
Nn(A) is a binomial variable with denominator -nt. − -nt′. and probability

Pr{x′ < (Xj − bn)/an ≤ x} = {Λn(x′) − Λn(x)}/n,

so the law of small numbers implies that Nn(A) converges to a limiting variable
N(A) whose distribution is Poisson with mean

(t − t′){Λ(x′) − Λ(x)} = µ(A).

This argument holds for any rectangle for which µ(A) < ∞, including the
infinite rectangle (t′, t] × (u, ∞), provided that Λ(u) < ∞.

To find the joint limiting joint distribution for disjoint finite rectangles
A1, . . . , Ak, we first suppose that their projections onto the horizontal axis are
disjoint. The binomial variables Nn(A1), . . . , Nn(Ak) are independent because
the background variables contributing to them are independent, so the Nn(Aj)
converge jointly to independent Poisson variables N(Aj) with means µ(Aj).

Now suppose that A1 and A2 are disjoint but their projections onto the
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horizontal axis overlap. Without loss of generality we can take A1 = (t′, t] ×
(x′, x] and A2 = (t′, t] × (y′, y], where x < y′, and let N0 count the remaining
background variables in the interval (t′, t]. Then N0, Nn(A1) and Nn(A2)
have a multinomial distribution with denominator -nt. − -nt′. and the last
two have probabilities

{Λn(x′) − Λn(x)}/n, {Λn(y′) − Λn(y)}/n.

Hence the argument in Example 1.9 implies that, as n → ∞, Nn(A1) and
Nn(A2) converge to independent Poisson variables with means µ(A1) and
µ(A2). Clearly the same would be true for disjoint sets A1, . . . , Ak.

The above argument is illustrated in Figure 1.2, which shows realisations of
the processes P10 and P1000 on the interval [0, 10] for independent standard
exponential background variables, and of the limiting Poisson process. The
counts Nn(A1), Nn(A2) and Nn(A4) are mutually independent for any n
because they are based on disjoints sets of background variables. The same
is true for the triplet Nn(A1), Nn(A3) and Nn(A3), but Nn(A2) and Nn(A3)
are dependent for any n because they are based on the same background
variables. All these counts have limiting Poisson distributions, and they are
all independent in the limit because the degree of dependence between Nn(A2),
but Nn(A3) diminishes to zero. The argument extends to any finite collection
of rectangles.

We see from above that if A1, . . . , Ak are disjoint rectangles, then

Nn(A1), . . . , Nn(Ak)
D−→ N(A1), . . . , N(Ak),

which are independent Poisson variables with means µ(A1), . . . , µ(Ak). Thus
if A =

⋃k
j=1 Aj , the sum Nn(A) =

∑k
j=1 Nn(Aj) converges to a Poisson

variable N(A) with mean µ(A) =
∑k

j=1 µ(Aj); this holds also for an infinite
union of rectangles provided µ(A) =

∑∞
j=1 µ(Aj) < ∞. Any non-pathological

set can be constructed as a limit of unions of disjoint rectangles, so the count
for any set likely to arise in a statistical context can be approximated by a
Poisson variable, provided the corresponding mean is finite.

To reconnect this discussion with maxima, consider the largest value Y of
the limiting process in the set (0, 1] ×R. This maximum is no larger than y if
and only if the set Ay = (0, 1] × (y, ∞) is empty, so the Poisson distribution
of N(Ay) gives

Pr(Y ≤ y) = Pr{N(Ay) = 0} = exp{−µ(Ay)} = exp{−Λ(y)},

which is of generalized extreme-value form. Moreover the independence of
the background variables implies that maxima for disjoint time periods are
independent, and that the distribution of a maximum over T time units is
exp{−T Λ(y)}.
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Figure 1.2 Poisson
process convergence
for standard
exponential variables.
Top and middle
panels: processes Pn

on [0, 10] for n = 10,
1000. Bottom panel:
limiting Poisson
process P. The
counts in the sets
A1, A2, A4 or
A1, A3, A4 are
independent for any
n because they
depend on
independent
background variables.
The counts in A2

and A3 are based on
the same background
variables and so are
dependent for finite
n but become
independent in the
limit.
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The Poisson process representation also allows us to study the limiting
pattern of exceedances over a threshold u for which Λ(u) < ∞. The number
of such exceedances in the interval (0, t] is N{(0, t] × (u, ∞)}, which has the
Poisson distribution with mean tΛ(u), so the probability that there are no
exceedances in this interval is exp{−tΛ(u)}. Equivalently, the waiting time T
to the first exceedance satisfies

Pr(T > t) = exp{−tΛ(u)}, t > 0 : (1.12)

T has the exponential distribution with parameter Λ(u). Since events in dis-
joint time intervals are independent, the waiting times between successive
exceedances are also mutually independent and satisfy (1.12). Thus the times
of exceedances of u occur according to a homogeneous Poisson process of rate
Λ(u) on R.

Theorem 1.2 follows at once from this construction. When x > 0, the prob-
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ability that the rescaled X exceeds x + u, conditional on it exceeding u,

Pr {(X − bn)/an > x + u | (X − bn)/an > u}

may be written as

Pr {X > bn + an(x + u)}
Pr (X > bn + anu)

=
nPr {X > bn + an(x + u)}

nPr (X > bn + anu)

=
Λn(x + u)

Λn(u)

→
Λ(x + u)

Λ(u)
, n → ∞,

and if σu = τ + ξ(u − η) > 0, so Λ(u) > 0 and this limit is well-defined, then

{1 + ξ(x + u − η)/τ}→1/ξ
+

{1 + ξ(u − η)/τ}→1/ξ
+

=

{
(1 + ξx/σu)→1/ξ

+ , ξ (= 0,

exp(−x/σu), ξ = 0.

Thus the limiting probability that (X − bn)/an < x + u, conditional on (X −
bn)/an > u, is given by (1.2).

In applications the background observations are typically both dependent
and subject to trend and seasonal variation, so the Poisson process model
developed above might appear unrealistic. In fact, with minor modifications,
it is robust enough to furnish the basis for widely-used statistical methods.

Poisson process

The Poisson point process P constructed above is a very special instance of a
powerful general model. An axiomatic approach considers a process of points,
also called events, lying in a suitable space E for which the number N(A) of
points in any set A can be unambiguously defined, and for which

• the variables N(A1), N(A2), . . . for disjoint sets A1, A2, . . . are indepen-
dent; and

• N(A) has a Poisson distribution with mean µ(A).

Sets A for which µ(A) is infinite must be avoided. Moreover the measure µ
must be diffuse, i.e., µ({x}) = 0 for every x ∈ E . For if µ({x}) = λ > 0 for
some x, then

Pr{N({x}) ≥ 2} = 1 − e→λ − λe→λ > 0,

and it would be impossible to count the points in any set containing x. A
process in which points must occur as singletons is called simple. If the measure
has an intensity function, defined as µ̇(x) = ∂µ(Ax)/∂x, where x represents
the top right-hand corner of a finite rectangle Ax, and if events x1, . . . , xn are
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observed in A, then the corresponding density function is

exp{−µ(A)} ×
n∏

j=1

µ̇(xj). (1.13)

Thus when points (t1, y1), . . . , (tn, yn) have been observed within A = (0, T )×
(u, ∞) and the measure is defined by (1.11), the density function,

exp{−T Λ(u)}
n∏

j=1

{−Λ̇(yj)},

provides a likelihood for inference on the parameters η, τ and ξ of the extremal
model. Similar expressions underpin the likelihoods for most of the Poisson
processes met here.

1.2.3 Proof of Lemma 1.6

Let x∗ = inf{x : F (x) > 0} and x∗ = sup{x : F (x) < 1} denote the (possi-
bly infinite) lower and upper support points for a random variable X whose
cumulative distribution function F has a positive density f in I = (x∗, x∗),
let H(x) = − log{1 − F (x)} denote the cumulative hazard function, and write
the hazard function as

H′(x) =
f(x)

1 − F (x)
=

1

r(x)
, x ∈ I,

where r(x) > 0 is the reciprocal hazard function. If F placed positive prob-
ability on x∗ then the maxima of a random sample from F would have a
degenerate limiting distribution, so H(x) → ∞ as x → x∗.

We prove Lemma 1.6 using a version of the von Mises conditions: we suppose
that r(x) has a continuous derivative r′(x) in I and that limx→x∗ r′(x) = ξ
for some real ξ. These assumptions are sufficient but not necessary, but they
apply broadly and allow an elementary proof. References to weaker conditions
and more general proofs can be found in the Bibliographic Notes.

For given x, set bt = F →1(1 − 1/t) ∈ I and let at be a positive function of
t for which bt + atx ∈ I for all t ≥ 1. We aim to find Λ(x) = limt→∞ Λt(x),
where

Λt(x) = t{1 − F (bt + atx)}, t ≥ 1.

If this limit exists, then 1 − F (bt + atx) → 0, so bt + atx → x∗ for every x for
which the limit is defined.
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Suppose first that x > 0 and write

− log Λt(x) = − log{1 − F (bt + atx)} − [− log {1 − F (bt)}]

= H(bt + atx) − H(bt) (1.14)

= at

∫ x

0
H′(bt + atu) du

= at

∫ x

0

du

r(bt + atu)
.

Taylor’s theorem implies that for each u ∈ [0, x] there exists s ≡ s(u) ∈ (0, u)
such that

r(bt + atu) = r(bt) + atur′{bt + ats(u)}. (1.15)

The implicit function theorem implies that s(u) is continuous in u, and it
follows that r′{bt + ats(u)} is uniformly continuous for u ∈ [0, x]. Hence

r(bt + atu)

at
=

r(bt) + atur′(bt + ats)

at
= c→1

t + ur′(bt + ats), 0 < u < x,

(1.16)
where ct = at/r(bt) is a positive function of t. Consequently

at

∫ x

0

du

r(bt + atu)
=

∫ x

0

ctdu

1 + ctr′(bt + ats)u
=

∫ x

0
gt(u)

ctdu

1 + ξtctu
,

where ξt = r′(bt) and

gt(u) =
1 + ctξtu

1 + ctr′(bt + ats)u
, u ∈ [0, x],

is continuous. Moreover gt(u) → 1 for each u, because the fact that bt + ats ≥
bt → x∗ implies that both ξt and r′(bt + ats) have limit ξ as t → ∞.

Since r(bt + atu) and ct are positive and gt(u) → 1, the function 1 + ξtctu
does not change sign for u ∈ [0, x]. Hence the mean value theorem for integrals
implies that there exists some u′ ∈ [0, x] such that

∫ x

0
gt(u)

ctdu

1 + ξtctu
= gt(u

′)

∫ x

0

ctdu

1 + ξtctu
= gt(u

′) × ξ→1
t log(1 + ξtctx).

If we now let t → ∞, gt(u′) → 1 and ξt → ξ, and, since the limiting expression
cannot depend on t, ct must converge to a positive constant c. Thus, the
assumption that a non-degenerate limit exists implies that at ∼ cr(bt) as
t → ∞, and the form of the limit is unchanged by setting at = r(bt) for all t.

With minor changes a similar argument holds for x < 0, and we conclude
that under the stated conditions on F and if the limit exists, it is of the form

lim
t→∞

Λt(x) = (1 + ξx)→1/ξ
+ ,

where the (·)+ ensures that the limit is defined when 1 + ξx is negative.
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To see that the limit is unique up to location and scale, let x = (y − η)/τ ,
so that y ∈ (η + τx∗, η + τx∗), Then F (x) is replaced by F{(y − η)/τ} and
r(x) is replaced by τr{(y − η)/τ}, so r′(x) is replaced by r′{(y − η)/τ}. Hence
limy→η+τx∗ r′{(y − η)/τ} = limx→x∗ r′(x) = ξ, and the limit Λ(x) is replaced
by the general form Λ{(y − η)/τ}. Replacing x, bt and at by y − η, bt − ηat/τ
and at/τ throughout the argument leads to the same result.


